4.6 Article

Global stability of vortex solutions of the two-dimensional Navier-Stokes equation

Journal

COMMUNICATIONS IN MATHEMATICAL PHYSICS
Volume 255, Issue 1, Pages 97-129

Publisher

SPRINGER
DOI: 10.1007/s00220-004-1254-9

Keywords

-

Ask authors/readers for more resources

Both experimental and numerical studies of fluid motion indicate that initially localized regions of vorticity tend to evolve into isolated vortices and that these vortices then serve as organizing centers for the flow. In this paper we prove that in two dimensions localized regions of vorticity do evolve toward a vortex. More precisely we prove that any solution of the two-dimensional Navier-Stokes equation whose initial vorticity distribution is integrable converges to an explicit self-similar solution called Oseen's vortex. This implies that the Oseen vortices are dynamically stable for all values of the circulation Reynolds number, and our approach also shows that these vortices are the only solutions of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. Finally, under slightly stronger assumptions on the vorticity distribution, we give precise estimates on the rate of convergence toward the vortex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available