3.9 Article

Masses, deformations and charge radii - Nuclear ground-state properties in the relativistic mean field model

Journal

PROGRESS OF THEORETICAL PHYSICS
Volume 113, Issue 4, Pages 785-800

Publisher

PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE
DOI: 10.1143/PTP.113.785

Keywords

-

Ask authors/readers for more resources

We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with Z, N >= 8 and Z <= 100 from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is needed to improve the current formulation of the relativistic mean field model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available