4.7 Article

Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells

Journal

CLINICAL CANCER RESEARCH
Volume 11, Issue 7, Pages 2492-2501

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-04-1688

Keywords

-

Categories

Ask authors/readers for more resources

Purpose: The L1 adhesion molecule (CD171) is overexpressed in human ovarian and endometrial carcinomas and is associated with bad prognosis. Although expressed as a transmembrane molecule, L1 is released from carcinoma cells in a soluble form. Soluble L1 is present in serum and ascites of ovarian carcinoma patients. We investigated the mode of L1 cleavage and the function of soluble L1. Experimental Design: We used ovarian carcinoma cell lines and ascites from ovarian carcinoma patients to analyze soluble L1 and L1 cleavage by Western blot analysis and ELISA. Results: We find that in ovarian carcinoma cells the constitutive cleavage of L1 proceeds in secretory vesicles. We show that apoptotic stimuli like C-2-ceramide, staurosporine, UV irradiation, and hypoxic conditions enhance L1-vesicle release resulting in elevated levels of soluble L1. Constitutive cleavage of L1 is mediated by a disintegrin and metalloproteinase 10, but under apoptotic conditions multiple metalloproteinases are involved. L1 cleavage occurs in two types of vesicles with distinct density features: constitutively released vesicles with similarity to exosomes and apoptotic vesicles. Both types of L1-containing vesicles are present in the ascites fluids of ovarian carcinoma patients. Soluble L1 from ascites is a potent inducer of cell migration and can trigger extracellular signal-regulated kinase phosphorylation. Conclusions: We suggest that tumor-derived vesicles may be an important source for soluble L1 that could regulate tumor cell function in an autocrine/paracrine fashion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available