4.6 Article

EGF-stimulation activates the nuclear localization signal of SHP-1

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 94, Issue 5, Pages 944-953

Publisher

WILEY
DOI: 10.1002/jcb.20307

Keywords

protein tyrosine phosphatase SHP-1; nuclear localization signal; epidermal growth factor; subcellular translocation

Funding

  1. PHS HHS [AL 45858] Funding Source: Medline

Ask authors/readers for more resources

Protein tyrosine phosphatase SHP-1 plays a critical role in the regulation of a variety of intracellular signaling pathways. SHP-1 is predominantly expressed in the cells of hematopoietic origin, and is recognized as a negative regulator of lymphocyte development and activation. SHP-1 consists of two Src homology 2 (SH2) domains and one protein tyrosine phosphatase (PTP) domain followed by a highly basic C-terminal tail containing tyrosyl phosphorylation sites. It is unclear how the C-terminal tail regulates SHP-1 function. We report the examination of the subcellular localization of a variety of truncated or mutated SHP-1 proteins fused with enhanced green fluorescent protein (EGFP) protein at either the N-terminal or the C-terminal end in different cell lines. Our data demonstrate that a nuclear localization signal (NLS) is located in the C-terminal tail of SHP-1 and the signal is primarily defined by three amino-acid residues (KRK) at the C-terminus. This signal is generally blocked in the native protein and can be exposed by fusing EGFP at the appropriate position or by domain truncation. We have also revealed that this NLS of SHP-1 is triggered by epidermal growth factor (EGF) stimulation and mediates translocation of SHP-1 from the cytosol to the nucleus in COS7 cell lines. These results not only demonstrate the importance of the C-terminal tail of SHP-1 in the regulation of nuclear localization, but also provide insights into its role in SHP-1-involved signal transduction pathways. (c) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available