4.3 Article

Induction of inflammatory cytokines and nitric oxide in J774.2 cells and murine macrophages by lipoteichoic acid and related cell wall antigens from Staphylococcus epidermidis

Journal

JOURNAL OF MEDICAL MICROBIOLOGY
Volume 54, Issue 4, Pages 315-321

Publisher

MICROBIOLOGY SOC
DOI: 10.1099/jmm.0.45872-0

Keywords

-

Categories

Ask authors/readers for more resources

Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LIPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytolkines [interleukin (I-L)-1 beta, IL-6 and tumour necrosis factor (TNF)-alpha] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LIPS from E coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LIPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available