4.4 Article

Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics

Journal

CLAYS AND CLAY MINERALS
Volume 53, Issue 2, Pages 171-178

Publisher

CLAY MINERALS SOC
DOI: 10.1346/CCMN.2005.0530207

Keywords

interlayer spacing; molecular dynamics; pyrophyllite

Ask authors/readers for more resources

Pyrophyllite is the precursor to other smectite-group minerals which exhibit swelling. The mineral structure of pyrophyllite can lead to other minerals in the smectite group, including montmorillonite, through appropriate isomorphous substitutions. In this work, an atomic model of the pyrophyllite interlayer was constructed. The response of the interlayer was evaluated using steered molecular dynamics simulations. In steered molecular dynamics, external forces were applied to individual atoms to study the response of the model to applied forces. In this work, forces are applied to the surface clay atoms to evaluate the displacement vs. applied stress in the interlayer between clay layers. This paper describes the construction of the model, the simulation procedure, and the results of the simulations which show that under the applied loading, deformation occurs mainly in the interlayer. The clay layers show relatively little deformation. The results show that the relationship between applied stress and displacement of the interlayer is linear. The stress-deforination relationship for the interlayer is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available