4.4 Article

Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis

Journal

JOURNAL OF BACTERIOLOGY
Volume 187, Issue 7, Pages 2233-2243

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.187.7.2233-2243.2005

Keywords

-

Categories

Ask authors/readers for more resources

Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Several of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. Although these proteins appear to be recruited to the division site in a hierarchical order, the molecular interactions underlying the assembly of the cell division machinery remain mostly unspecified. In the present study, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to unravel the molecular basis of septum assembly by analyzing the protein interaction network among E. coli cell division proteins. Our results indicate that the Fts proteins are connected to one another through multiple interactions. A deletion mapping analysis carried out with two of these proteins, FtsQ and FtsI, revealed that different regions of the polypeptides are involved in their associations with their partners. Furthermore, we showed that the association between two Fts hybrid proteins could be modulated by the coexpression of a third Fts partner. Altogether, these data suggest that the cell division machinery assembly is driven by the cooperative association among the different Fts proteins to form a dynamic multiprotein structure at the septum site. In addition, our study shows that the cAMP-based two-hybrid system is particularly appropriate for analyzing molecular interactions between membrane proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available