4.6 Article

Magneto-elastic combination resonances analysis of current-conducting thin plate

Journal

APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
Volume 29, Issue 8, Pages 1053-1066

Publisher

SHANGHAI UNIV
DOI: 10.1007/s10483-008-0809-y

Keywords

magneto-elastic; current-conducting thin plate; combination resonance; stability; multiple scales method

Ask authors/readers for more resources

Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electromagnetic forces are derived. In addition, the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant transverse magnetic filed are studied. Using the Galerkin method, the corresponding nonlinear vibration differential equations are derived. The amplitude frequency response equation of the system in steady motion is obtained with the multiple scales method. The excitation condition of combination resonances is analyzed. Based on the Lyapunov stability theory, stabilities of steady solutions are analyzed, and critical conditions of stability are also obtained. By numerical calculation, curves of resonance-amplitudes changes with detuning parameters, excitation amplitudes and magnetic intensity in the first and the second order modality are obtained. Time history response plots, phase charts, the Poincare mapping charts and spectrum plots of vibrations are obtained. The effect of electro-magnetic and mechanical parameters for the stabilities of solutions and the bifurcation are further analyzed. Some complex dynamic performances such as period-doubling motion and quasi-period motion are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available