4.6 Article

Ferroelectric/ferroelastic behavior and piezoelectric response of lead zirconate titanate thin films under nanoindentation

Journal

JOURNAL OF APPLIED PHYSICS
Volume 97, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1870092

Keywords

-

Ask authors/readers for more resources

The electromechanical response of pure lead zirconate titanate (PZT) and Mn-doped PZT thin ferroelectric films under nanoindentation forces of up to 500 mN was investigated. The stress-induced current transients were measured as a function of the externally applied load on films of different thicknesses using a spherical WC-Co cermet indenter of 500 mu m nominal radius. It was found that the quasi-static current generated through the direct piezoelectric effect is superimposed with a contribution from irreversible domain processes during the loading/unloading cycle. The film thickness dependency of the electrical transients and an asymmetry of the current-force curves are attributed to the in-plane clamping stress in the films produced by a dissimilar substrate. Analysis of corresponding charge-force hysteresis loops revealed a significant role for the residual stress state on the polarization switching in thin films. By the application of an indentation force, a portion of Barkhausen jumps was empirically estimated to increase as a consequence of reduction of the clamping effect on domains. The Rayleigh hysteretic charge-force curves showed recovery of the charge released during the load-unload stress cycle. For the thicker 700 nm films, the total charge released during loading was fully recovered with weak hysteresis. In contrast, strong in-plane clamping stresses in the 70 nm thick films are suggested to be reponsible for incomplete recovery upon unloading. A considerable domain-wall contribution to the electromechanical response was demonstrated by an enhanced polarization state, which was shown by an increase of the effective piezoelectric coefficient d(eff) of about 35% of its initial value for the thin films at a maximum force of 500 mN. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available