4.6 Article

Long-term infusion of Met5-enkephalin fails to protect murine hearts against ischemia-reperfusion injury

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00257.2004

Keywords

infarction; ischemic preconditioning; myocardial; peptides; opioid

Ask authors/readers for more resources

Recently, we reported that exogenous administration of Met(5)-enkephalin (ME) for 24 h reduces infarct size after ischemia-reperfusion in rabbits. In the present study, we tested whether ME-induced cardioprotection is exhibited in murine hearts and whether chronic infusion of this peptide can render hearts tolerant to ischemia. Barbiturate-anesthetized open-chest mice (C57BL/6J) were subjected to regional myocardial ischemia-reperfusion (45 min of occlusion and 20 min of reperfusion). Mice received saline vehicle or ME for 24 h or 2 wk before undergoing regional myocardial ischemia-reperfusion or for 24 h followed by a 24-h delay before regional myocardial ischemia-reperfusion. Infarct size was measured with propidium iodide and is expressed as a percentage of the area at risk. Infarcts were smaller after infusion of ME for 24 h than with vehicle control: 49.2 +/- 9.0% vs. 22.2 +/- 3.2% (P < 0.01). In contrast, administration of ME for 2 wk failed to elicit cardioprotection: 36.5 +/- 9.1% and 41.4 +/- 8.2% for control and ME, respectively (P = not significant). When a 24-h delay was imposed between the end of drug treatment and the onset of the ischemic insult, cardioprotection was lost: 38.5 +/- 6.1% and 42.8 +/- 6.6% for control and ME, respectively (P = not significant). Chronic sustained exogenous infusion of the endogenously produced opioid peptide ME is associated with loss of the cardioprotection that is observed with 24 h of infusion. Furthermore, in this in vivo murine model, ME failed to induce delayed tolerance to myocardial ischemia-reperfusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available