4.5 Article

A comparison of flow field structures of two tri-leaflet polymeric heart valves

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 33, Issue 4, Pages 429-443

Publisher

SPRINGER
DOI: 10.1007/s10439-005-2498-z

Keywords

fluid mechanics; polyurethanes; coaptation; washout; vena contracta; gap channel; oscillation

Funding

  1. NHLBI NIH HHS [HL 720621] Funding Source: Medline

Ask authors/readers for more resources

Polymeric heart valves have the potential to reduce thrombogenic complications associated with current mechanical valves and overcome fatigue-related problems experienced by bioprosthetic valves. In this in vitro study, the velocity fields inside and downstream of two different prototype tri-lealfet polymeric heart valves were studied. Experiments were conducted on two 23 mm prototype polymeric valves, provided by AorTech Europe, having open or closed commissure designs and leaflet thickness of 120 and 80 mu m, respectively. A two-dimensional LDV system was used to measure the velocity fields in the vicinity of the two valves under simulated physiological conditions. Both commissural design and leaflet thickness were found to affect the flow characteristics. In particular, very high levels of Reynolds shear stress of 13,000 dynes/cm(2) were found in the leakage flow of the open commisure design. Maximum leakage velocities in the open and closed designs were 3.6 m/s and 0.5 m/s respectively; the peak forward flow velocities were 2.0 m/s and 2.6 m/s, respectively. In both valve designs, shear stress levels exceeding 4,000 dyne/cm(2) were observed at the trailing edge of the leaflets and in the leakage and central orifice jets during peak systole. Additionally, regions of low velocity flow conducive to thrombus formation were observed in diastole. The flow structures measured in these experiments are consistent with the location of thrombus formation observed in preliminary animal experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available