4.5 Article

Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 33, Issue 4, Pages 475-482

Publisher

SPRINGER
DOI: 10.1007/s10439-005-2503-6

Keywords

chemotaxis; gradient; hierarchy; microfluidic; migration; neutrophil

Funding

  1. NIAID NIH HHS [R03AIO055033] Funding Source: Medline
  2. NIGMS NIH HHS [GM-66051] Funding Source: Medline

Ask authors/readers for more resources

Neutrophils migrating in tissue respond to complex overlapping signals generated by a variety of chemotactic factors (CFs). Previous studies suggested a hierarchy between bacteria-derived CFs and host-derived CFs but could not differentiate neutrophil response to potentially equal host-derived CFs (IL-8 and LTB4). This paper reports neutrophil migration in conflicting gradients of IL-8 and LTB4 using a microfluidic chemotaxis device that can generate stable and well-defined gradients. We quantitatively characterized the movement of cells from time-lapse images. Neutrophils migrate more efficiently toward single IL-8 gradients than single LTB4 gradients as measured by the effective chemotactic index (ECI). In opposing gradients of IL-8 and LTB4, neutrophils show obvious chemotaxis toward a distant gradient, consistent with previous reports. When an opposing gradient of LTB4 is present, neutrophils show less effective chemotaxis toward IL-8 than when they are in a gradient of IL-8 alone. In contrast, the chemotactic response of neutrophils to LTB4 is not reduced in opposing gradients as compared to that in a single LTB4 gradient. These results indicate that the presence of one host-derived CF modifies the response of neutrophils to a second CF suggesting a subtle hierarchy between them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available