4.4 Article

Optical properties of excitons in ZnO-based quantum well heterostructures

Journal

SEMICONDUCTOR SCIENCE AND TECHNOLOGY
Volume 20, Issue 4, Pages S78-S91

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0268-1242/20/4/010

Keywords

-

Ask authors/readers for more resources

Recently the developments in the field of II-VI-oxides have been spectacular. Various epitaxial methods have been used to grow epitaxial ZnO layers. Not only epilayers but also sufficiently good-quality multiple quantum wells (MQWs) have been grown by laser molecular-beam epitaxy (laser-MBE). We mainly discuss the experimental aspect of the optical properties of excitons in ZnO-based MQW heterostructures. Systematic temperature-dependent studies of optical absorption and photoluminescence in these MQWs were used to evaluate the well-width dependence and the composition dependence of the major excitonic properties. Based on these data, the localization of excitons, the influence of exciton-phonon interaction and quantum-confined Stark effects are discussed. The optical spectra of dense excitonic systems are shown to be determined mainly by the interaction process between excitons and biexcitons. The high-density excitonic effects play a role in the observation of room-temperature stimulated emission in the ZnO MQWs. The binding energies of exciton and biexciton are enhanced from the bulk values, as a result of quantum-confinement effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available