4.5 Article

Bisphenol A accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway

Journal

TOXICOLOGICAL SCIENCES
Volume 84, Issue 2, Pages 319-327

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfi088

Keywords

bisphenols; 3T3-L1 cells; terminal adipocyte differentiation; LY294002; Akt kinase

Categories

Ask authors/readers for more resources

In order to identify whether bisphenol A (BPA) acts as an adipogenic agent, following the hormonal induction of differentiation into adipocytes, 3T3-L1 cells were treated for six days with BPA alone. Treatment with BPA increased the triacylglycerol (TG) content of the cultures, increased the percentage of Oil Red O-staining cells in the cultures, and increased the levels of lipoprotein lipase (LPL) and adipocyte-specific fatty acid binding protein (aP2) mRNAs. These findings indicate that BPA was able to accelerate terminal differentiation of 3T3-L1 cells into adipocytes. LY294002, a chemical inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), blocked completely the increasing effect of BPA on TG accumulation and expression of LPL and aP2 mRNAs. Western blot analysis revealed that BPA increased the level of phosphorylated Akt kinase. Based on these findings, we concluded that BPA acted through the PI 3-kinase and Akt kinase pathway, resulting in increased TG accumulation and expression of adipocyte genes. The structure-activity relationship for BPA-related chemicals was examined. Eight derivatives of BPA (three diphenylalkanes with different substituents at the central carbon atom, three diphenylalkanes with ester bonds on hydroxyl groups in the phenolic rings, one bisphenol consisting of a sulphur atom at the central position, one chemical with cyanic groups, instead of hydroxyl groups, in the phenolic rings) accelerated terminal adipocyte differentiation and their potencies to increase TG accumulation were 73-97% of that of BPA. Two diphenylalkanes with ether bonds on hydroxyl groups and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) did not have the ability to accelerate terminal adipocyte differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available