4.6 Article

Nonrandom, size- and timing-biased breeding in a hatchery population of steelhead trout

Journal

CONSERVATION BIOLOGY
Volume 19, Issue 2, Pages 446-454

Publisher

BLACKWELL PUBLISHING INC
DOI: 10.1111/j.1523-1739.2005.00515.x

Keywords

aquaculture; artificial propagation; salmonids; selection

Ask authors/readers for more resources

Hatcheries have been built and operated to buffer salmon and trout populations from overfishing and to compensate for habitat lost or degraded by human activities. These facilities are now so prevalent that in some cases hatchery-produced salmon outnumber salmon produced in the wild. By default, this makes them an important component in the current ecology and evolution of salmonids. Hatcheries differ from natural environments in many ways, and among the most fundamental is the necessity that humans select fish for breeding instead of allowing natural processes of mate choice and competition. We examined the mating system for steelhead trout (Oncorhynchus mykiss) at Forks Creek Hatchery in southwest Washington and investigated factors affecting selection of individual steelhead for spawning by the hatchery staff. Despite efforts by the staff to not spawn selectively, data on steelhead spawned over 7 years revealed selection for large adult body size and early reproductive timing and a tendency for size-assortative mating (i.e., large with large). Selection on size was related to selection on reproductive timing because early returning fish tended to be larger than those returning later. To improve the fitness of both hatchery fish destined to spawn in the wild and hatchery fish designated to be spawned in the hatchery, a better understanding of factors associated with the range of reproductive success and mate-choice mechanisms in the wild is vital. This knowledge may then be applied to artificial propagation programs designed for conservation or enhancement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available