4.5 Article

Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 76, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1889432

Keywords

-

Ask authors/readers for more resources

Thin-film nanocalorimeter for low temperatures and high magnetic fields is described. The calorimeter is based on a commercial microchip module (thermal conductivity vacuum gauge TCG 3880 from Xensor Integration, NL). The gauge consists of submicron silicon nitride membrane with a film-thermopile and a resistive film-heater with dimensions of 50x100 mu m(2) located at the center of the membrane. The gauge is mounted in a thermostat filled with helium exchange gas. The method of alternating current (ac) calorimetry is applied for heat capacity measurements. The noise-floor sensitivity of the calorimeter is better than 1 nJ/K below 100 K and about 3 nJ/K at 300 K. This allows for reliable measurements to be performed on sub-microgram samples. It is proved that the method is applicable for heat capacity measurements at temperatures in the range of 5-300 K and in high magnetic fields up to 8 T. We present a theoretical analysis of the thermal processes in the gauge-sample-surrounding gas system. On this basis a calibration method has been developed. We demonstrate that the technique yields correct heat capacity for test samples and that in special cases the thermal conductivity and the magnetostriction of the sample can be measured simultaneously with the heat capacity. (C) American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available