4.3 Article

Tyrosine kinase inhibition affects skate anion exchanger isoform I alterations after volume expansion

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00691.2004

Keywords

band 4.1; ankyrin; detergent-resistant membranes; p72(syk)

Categories

Funding

  1. NIDDK NIH HHS [DK-47722] Funding Source: Medline

Ask authors/readers for more resources

Upon exposure to hypotonic medium, skate red blood cells swell and then reduce their volume by releasing organic osmolytes and associated water. The regulatory volume decrease is inhibited by stilbenes and anion exchange inhibitors, suggesting involvement of the red blood cell anion exchanger skAE1. To determine the role of tyrosine phosphorylation, red blood cells were volume expanded with and without prior treatment with the tyrosine kinase inhibitor piceatannol. At the concentration used, 130 mu M, piceatannol nearly completely inhibits p72(syk), a tyrosine kinase previously shown to phosphorylate skAE1 (M. W. Musch, E. H. Hubert, and L. Goldstein. J Biol Chem 274: 7923-7928, 1999). Hyposmotic-induced volume expansion stimulated association of p72(syk) with a light membrane fraction of skate red blood cells. Piceatannol did not inhibit this association but decreased hyposmotically stimulated increased skAE1 tyrosine phosphorylation. Movement of skAE1 from an intracellular to a surface detergent-resistant membrane domain and tetramer formation were not inhibited by piceatannol treatment. Two effects of hyposmotic-induced volume expansion, decreased band 4.1 binding and increased ankyrin, were both inhibited by piceatannol. These results suggest that at least one event requiring p72(syk) activation is pivotal for hyposmotic-induced increased transport; however, steps that do not require tyrosine phosphorylation may also play a role.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available