4.6 Article

Enhancement of autoantibody pathogenicity by viral infections in mouse models of anemia and thrombocytopenia

Journal

AUTOIMMUNITY REVIEWS
Volume 4, Issue 4, Pages 247-252

Publisher

ELSEVIER
DOI: 10.1016/j.autrev.2004.11.010

Keywords

anemia; thrombocytopenia; viruses; phagocytosis; autoantibodies

Categories

Ask authors/readers for more resources

Viral infections are involved in the pathogenesis of blood autoimmune diseases such as hemolytic anemia and thrombocytopenia. Although antigenic mimicry has been proposed as a major mechanism by which viruses could trigger the development of such diseases, it is not easy to understand how widely different viruses might induce these blood autoimmune diseases by this sole mechanism. In mice infected with lactate dehydrogenase-elevating virus (LDV), or mouse hepatitis virus, and treated with anti-erythrocyte or anti-platelet monoclonal autoantibodies at a dose insufficient to induce clinical disease by themselves, the infection sharply enhances the pathogenicity of autoantibodies, leading to severe anemia or thrombocytopenia. This effect is observed only with antibodies that induce disease through phagocytosis. Moreover, the phagocytic activity of macrophages from infected mice is increased and the enhancing effect of infection on autoantibody-mediated pathogenicity is strongly suppressed by treatment of mice with clodronate-containing liposomes. Finally, the disease induced by LDV after administration of autoantibodies is largely suppressed in animals deficient for gamma-interferon receptor. Together, these observations suggest that viruses may trigger autoantibody-mediated anemia or thrombocytopenia by activating macrophages through gamma-interferon production, a mechanism that may account for the pathogenic similarities of multiple infectious agents. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available