4.7 Article

Estimation of potential soil erosion for River Perkerra catchment in Kenya

Journal

WATER RESOURCES MANAGEMENT
Volume 19, Issue 2, Pages 133-143

Publisher

SPRINGER
DOI: 10.1007/s11269-005-2706-5

Keywords

catchment; erosion; GIS; remote sensing; Universal Soil Loss Equation (USLE)

Ask authors/readers for more resources

River Perkerra catchment with an area of 1207 km(2) is drained by River Perkerra, which is one of the rivers flowing into Lake Baringo whose drainage area is 6820 km(2). The lake is in a semi-arid area of Kenya. Its depth has reduced from 8 m in 1972 to 2.5 m in 2003 due to siltation resulting from high erosion rates in the catchment. The entire catchment is characterised by very steep slopes on the hillsides and gentle slopes in the middle and lower reaches where the surface is bare with very little undergrowth. Interventions to control soil erosion in this fragile ecosystem have been limited partly because of lack of data on erosion and its spatial distribution. In the present study, Universal Soil Loss Equation (USLE) was used in conjunction with GIS Arc/Info and Integrated Land and Water Information Systems (ILWIS) to estimate potential soil loss from River Perkerra catchment. Various physical parameters of the equation were derived by analysing spatial data and processing Landsat TM satellite imagery of the catchment. The estimated potential soil erosion from the catchment was 1.73 million tonnes/year while the sediment yield at the catchment outlet was found to be 1.47 million tonnes/year. The sediment delivery ratio derived using an empirical equation was 0.83. This figure indicates that a higher proportion of sediments generated in the catchment is delivered at the outlet. The use of GIS enabled the results of erosion potential to be mapped back onto the catchment. This is useful in identifying priority areas that require urgent management interventions in controlling soil erosion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available