4.7 Article

Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice -: a model of familial Parkinson's disease

Journal

NEUROBIOLOGY OF DISEASE
Volume 18, Issue 3, Pages 492-498

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2004.12.009

Keywords

Parkinson's disease; A30P; oxidative stress; lactate dehydrogenase; enolase; carbonic anhydrase; alpha-synuclein; protein oxidation

Categories

Funding

  1. NIA NIH HHS [AG-105119, AG-10836] Funding Source: Medline
  2. NINDS NIH HHS [NS41786] Funding Source: Medline

Ask authors/readers for more resources

Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra compacta. alpha-Synuclein is strongly implicated in the pathophysiology of PD because aggregated alpha-synuclein accumulates in the brains of subjects with PD, mutations in alpha-synuclein cause familial PD, and overexpressing mutant human alpha-synuclein (A30P or A53T) causes degenerative disease in mice or drosophila. The pathophysiology of PD is poorly understood, but increasing evidence implicates mitochondrial dysfunction and oxidative stress. To understand how mutations in alpha-synuclein contribute to the pathophysiology of PD, we undertook a proteomic analysis of transgenic mice overexpressing A30P alpha-synuclein to investigate which proteins are oxidized. We observed more than twofold selective increases in specific carbonyl levels of three metabolic proteins in brains of symptomatic A30P a-synuclein mice: carbonic anhydrase 2 (Car2), alpha-enolase (Enol), and lactate dehydrogenase 2 (Ldh2). Analysis of the activities of these proteins demonstrates decreased functions of these oxidatively modified proteins in brains from the A30P compared to control mice. Our findings suggest that proteins associated with impaired energy metabolism and mitochondria are particularly prone to oxidative stress associated with A30P-mutant alpha-synuclein. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available