4.8 Article

Spin-conserving carrier recombination in conjugated polymers

Journal

NATURE MATERIALS
Volume 4, Issue 4, Pages 340-346

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat1354

Keywords

-

Ask authors/readers for more resources

The ultimate efficiency of polymer light-emitting diodes is limited by the fraction of charges recombining in the molecular singlet manifold. We address the question of whether this fraction can principally exceed the fundamental limit set down by spin statistics, which requires the possibility of spin changes during exciton formation. Sensitized phosphorescence at 4-300 K enables a direct quantification of spin conversion in coulombically bound electron-hole pairs, the precursors to exciton formation. These are stabilized in external electric fields over times relevant to carrier transport, capture and recombination in devices. No interconversion of exciton intermediates between singlet and triplet configurations is observed. Static magnetic fields are equally unable to induce spin mixing in electroluminescence. Our observations imply substantial exchange splitting at all times during carrier capture. Prior statements regarding increased singlet yields above 25% merely on the basis of higher singlet than triplet formation rates should therefore be re-examined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available