4.4 Article

The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection

Journal

INFECTION AND IMMUNITY
Volume 73, Issue 4, Pages 2020-2032

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.73.4.2020-2032.2005

Keywords

-

Funding

  1. NIAID NIH HHS [AI43987, R01 AI043987] Funding Source: Medline

Ask authors/readers for more resources

Our previous mutational analysis of Legionella pneumophila demonstrated a role for type II protein (Lsp) secretion and iron acquisition in intracellular infection and virulence. In gram-negative bacteria, the twin-arginine translocation (Tat) pathway is involved in secretion of proteins, including components of respiratory complexes, across the inner membrane to the periplasm. To assess the significance of Tat for L. pneumophila, tatB mutants were characterized. The mutants exhibited normal growth in standard media but grew slowly under low-iron conditions. They were also impaired in the Nadi assay, indicating that the function of cytochrome c oxidase is influenced by tatB. Consistent with this observation, a subunit of the cytochrome c reductase was shown to be a Tat substrate. Supernatants of the tatB mutants showed a 30% reduction in phospholipase C activity while maintaining normal levels of other Lsp secreted activities. When tested for infection of U937 macrophages, the tatB mutants showed a 10-fold reduction in growth. Double mutants lacking tatB and Lsp secretion were even more defective, suggesting tatB has an intracellular role that is independent of Lsp. tatB mutants were also impaired 20-fold in Hartmannella vermiformis amoebae cultured in the presence of an iron chelator. All mutant phenotypes were complemented by reintroduction of an intact tatB. Thus, L. pneumophila tatB plays a role in the formation of a respiratory complex, growth under low-iron conditions, the secretion of a phospholipase C activity, and intracellular infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available