4.7 Article

PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 69, Issue 7, Pages 1787-1801

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2004.10.006

Keywords

-

Ask authors/readers for more resources

Re-Os data and PGE concentrations as well as Mo concentrations and isotope data are reported for suites of fine clastic sediments and black shales from the Barberton Greenstone Belt, South Africa (Fig Tree and Moodies Groups, 3.25-3.15 Ga), the Belingwe Greenstone Belt, Zimbabwe (Manjeri Formation, ca. 2.7 Ga) and shales from the Witwatersrand, Ventersdorp and Transvaal Supergroups, South Africa ranging from 2.95 to 2.2 Ga. Moderately oxidizing conditions are required to mobilize Re and Mo in the environment, Mo fractionation only occurs in solution, and these parameters thus have potential use as paleoredox proxies for the early Earth. PGE + Re abundance patterns of Barberton Greenstone Belt sediments are uniform and very similar in shape to those of komatiites. This indicates (1) that the PGE came from a source of predominantly ultramafic composition and, (2) that PGE were transported and deposited essentially in particulate form. Sediments from the younger Belingwe Greenstone Belt show more fractionated PGE + Re patterns and have Re/Os ratios 10 to 100X higher than those of Barberton sediments. Their PGE abundance patterns and Re/Os ratios are intermediate between those of the mid-Archean shales and Neoproterozoic to Recent black shales. They reflect scavenging of Re from solution in the sedimentary environment. delta(98/95)Mo values of black shales of all ages correlate with their concentrations. The Barberton Greenstone Belt samples have similar to 1-3 ppm Mo, similar to a granitoid-basaltic source. This Mo has delta(98/95)Mo between -1.9 and -2.4 parts per thousand relative to present day mean ocean water molybdenum, MOMO and is thus not isotopically fractionated relative to such a source. Similar to the PGE this indicates transport in solid form. Sediments from the Belingwe Greenstone Belt show in part enhanced Mo concentrations (up to 6 ppm) and Mo isotope fractionation (delta(98/95)Mo up to -1.4 parts per thousand relative to MOMO). The combined PGE + Re and Mo data show mainly reducing conditions in the mid-Archean and suggest that by 2.7 Ga, the atmosphere and oceans had become more oxidizing. Substantially younger samples from the Transvaal Supergroup (to ca. 2.2 Ga) surprisingly have mainly low Mo concentrations (around 1 ppm) and show no significant Mo isotope fractionation relative to the continental source. Among possible explanations for this are a return to reducing atmospheric conditions after 2.7 Ga, reservoir effects, or Mo removal by sulfide precipitation following sulfate reduction in early Proterozoic oceans. Copyright (c) 2005 Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available