4.7 Article

Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing

Journal

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
Volume 9, Issue 2, Pages 143-158

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEVC.2005.844166

Keywords

DNA computing; DNA sequence design; multiobjective evolutionary algorithm (MOEA); nucleic acid computing simulation toolkit/sequence generator (NACST/Seq)

Ask authors/readers for more resources

DNA computing relies on biochemical reactions of DNA molecules and may result in incorrect or undesirable computations. Therefore, much work has focused on designing the DNA sequences to make the molecular computation more reliable. Sequence design involves with a number of heterogeneous and conflicting design criteria and traditional optimization methods may face difficulties. In this paper, we formulate the DNA sequence design as a multiobjective optimization problem and solve it using a constrained multiobjective evolutionary algorithm (EA). The method is implemented into the DNA sequence design system, NACST/Seq, with a suite of sequence-analysis tools to help choose the best solutions among many alternatives. The performance of NACST/Seq is compared with other sequence design methods, and analyzed on a traveling salesman problem solved by bio-lab experiments. Our experimental results show that the evolutionary sequence design by NACST/Seq outperforms in its reliability the existing sequence design techniques such as conventional EAs, simulated annealing, and specialized heuristic methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available