4.5 Article

A highly conserved 6S RNA structure is required for regulation of transcription

Journal

NATURE STRUCTURAL & MOLECULAR BIOLOGY
Volume 12, Issue 4, Pages 313-319

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nsmb917

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM067955, GM67955] Funding Source: Medline

Ask authors/readers for more resources

6S RNA, a highly abundant noncoding RNA, regulates transcription through interaction with RNA polymerase in Escherichia coli. Computer searches identified 6S RNAs widely among gamma-proteobacteria. Biochemical approaches were required to identify more divergent 6S RNAs. Two Bacillus subtilis RNAs were found to interact with the housekeeping form of RNA polymerase, thereby establishing them as 6S RNAs. A third B. subtilis RNA was discovered with distinct RNA polymerase - binding activity. Phylogenetic comparison and analysis of mutant RNAs revealed that a conserved secondary structure containing a single-stranded central bulge within a highly double-stranded molecule was essential for 6S RNA function in vivo and in vitro. Reconstitution experiments established the marked specificity of 6S RNA interactions for sigma(70)-RNA polymerase, as well as the ability of 6S RNA to directly inhibit transcription. These data highlight the critical importance of structural characteristics for 6S RNA activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available