4.4 Article

Exact solutions with noncommutative symmetries in Einstein and gauge gravity

Journal

JOURNAL OF MATHEMATICAL PHYSICS
Volume 46, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1869538

Keywords

-

Ask authors/readers for more resources

We present new classes of exact solutions with noncommutative symmetries constructed in vacuum Einstein gravity (in general, with nonzero cosmological constant), five-dimensional (5D) gravity and (anti) de Sitter gauge gravity. Such solutions are generated by anholonomic frame transforms and parametrized by generic off-diagonal metrics. For certain particular cases, the new classes of metrics have explicit limits with Killing symmetries but, in general, they may be characterized by certain anholonomic noncommutative matrix geometries. We argue that different classes of noncommutative symmetries can be induced by exact solutions of the field equations in commutative gravity modeled by a corresponding moving real and complex frame geometry. We analyze two classes of black ellipsoid solutions (in the vacuum case and with cosmological constant) in four-dimensional gravity and construct the analytic extensions of metrics for certain classes of associated frames with complex valued coefficients. The third class of solutions describes 5D wormholes which can be extended to complex metrics in complex gravity models defined by noncommutative geometric structures. The anholonomic noncommutative symmetries of such objects are analyzed. We also present a descriptive account how the Einstein gravity can be related to gauge models of gravity and their noncommutative extensions and discuss such constructions in relation to the Seiberg-Witten map for the gauge gravity. Finally, we consider a formalism of vielbeins deformations subjected to noncommutative symmetries in order to generate solutions for noncommutative gravity models with Moyal (star) product. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available