4.5 Article

Cyclic loading response of loose air-pluviated Fraser River sand for validation of numerical models simulating centrifuge tests

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 42, Issue 2, Pages 550-561

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/t04-119

Keywords

liquefaction of sands; air-pluviation; cyclic loading; direct simple shear testing; specimen preparation; fabric

Ask authors/readers for more resources

Cyclic loading response of loose Fraser River sand was investigated, as input to numerical simulation of centrifuge physical models, using constant-volume direct simple shear tests conducted with and without initial static shear stress condition. Although the observed trends in mechanical response were similar, air-pluviated specimens were more susceptible to liquefaction under cyclic loading than their water-pluviated counterparts. Densification due to increasing confining stress (stress densification) significantly increased the cyclic resistance of loose air-pluviated sand, with strong implications for the interpretation of observations from centrifuge testing. The stress densification effect, however, was not prominent in the case of water-pluviated specimens. The differences arising from the two specimen reconstitution methods can be attributed to the differences in particle structure and highlight the importance of fabric effects in the assessment of the mechanical response of sands. The initial static shear stresses appear to reduce the cyclic shear resistance of loose air-pluviated sand in simple shear loading, in contrast to the increases in resistance reported on the basis of data from triaxial testing. Data from laboratory element tests that closely mimic the soil fabric and loading modes of the centrifuge specimens are essential for meaningful validation of numerical models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available