4.7 Article

Adaptive responses of Populus kangdingensis to drought stress

Journal

PHYSIOLOGIA PLANTARUM
Volume 123, Issue 4, Pages 445-451

Publisher

WILEY
DOI: 10.1111/j.1399-3054.2005.00477.x

Keywords

-

Categories

Ask authors/readers for more resources

We measured dry matter accumulation and allocation, photosynthesis, lipid peroxidation, osmotic adjustment, antioxidative defences and ABA content of Populus kangdingensis C. Wang et Tung under three different watering regimes (100%, 50% and 25% of the field capacity) to characterize the morphological, physiological and biochemical basis of drought resistance in woody plants. The results showed that drought stress caused pronounced inhibition of the growth and photosynthesis rate, and that the stomatal limitation to photosynthesis was dominant. The decrease in stomatal conductance effectively controlled water loss and increased water use efficiency. Drought also affected many physiological and biochemical processes, including increases in free proline, malondialdehyde and ABA content, and superoxide dismutase activity. On the other hand, the ABA content of leaves was significantly higher than that of stem and roots under all watering regimes; the high level of ABA in the leaf may result from the large import of ABA to leaves from other organs. These results demonstrate that there are a large set of parallel changes in the morphological, physiological and biochemical responses when plants are exposed to drought stress; these changes may enhance the capability of plants to survive and grow during drought periods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available