4.7 Article

Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia

Journal

NEUROBIOLOGY OF DISEASE
Volume 18, Issue 3, Pages 476-483

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2004.12.011

Keywords

ischemia; CA1 astrocyte; glutamate transporter; transporter current; GLT1 transporter; GLAST transporter

Categories

Ask authors/readers for more resources

Astroglial glutamate transporters, GLT-1 and GLAST, play an essential role in removing released glutamate from the extracellular space and are essential for maintaining a low concentration of extracellular glutamate in the brain. It was hypothesized that impaired function of glial glutamate transporters induced by transient global ischemia may lead to an elevated level of extracellular glutamate and subsequent excitotoxic neuronal death. To test this hypothesis, in the present study, we performed whole-cell patch-clamp recording of hippocampal CA1 astrocytes in control or postischemic slices, and measured glutamate transporter activity by recording glutamate-evoked transporter currents. Six to 24 h after global ischemia, maximal amplitude of glutamate transporter currents recorded from postischemic CA1 strocytes was significantly reduced. Western blotting analysis indicated that transient global ischemia decreased the protein level of GLT-1 in the hippocampal CA1 area without affecting GLAST protein level. Further real-time quantitative RT-PCR assays showed that global ischemia resulted in a decrease in GLT-1 mRNA level of hippocampal CA1 region. Global ischemia-induced reduction in GLT-1 expression and glutamate transporter function of CA1 astrocytes precedes the initiation of delayed neuronal death in CA1 pyramidal layer. The present study provides the evidence that transient global ischemia downregulates glutamate transporter function of hippocampal CA1 astrocytes by decreasing mRNA and protein levels of GLT-1. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available