4.7 Article

Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 288, Issue 4, Pages C840-C849

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00325.2004

Keywords

S-nitrosylation; redox regulation

Funding

  1. NHLBI NIH HHS [HL-67866, HL-68666] Funding Source: Medline

Ask authors/readers for more resources

Persistent inhibition of cytochrome- c oxidase, a terminal enzyme of the mitochondrial electron transport chain, by excessive nitric oxide ( NO) derived from inflammation, polluted air, and tobacco smoke contributes to enhanced oxidant production and programmed cell death or apoptosis of lung cells. We sought to determine whether the long-term exposure of pulmonary artery endothelial cells (PAEC) to pathophysiological concentrations of NO causes persistent inhibition of complex IV through redox modification of its key cysteine residues located in a putative NO-sensitive motif. Prolonged exposure of porcine PAEC to 1 mM 2,2'-(hydroxynitrosohydrazino)-bis-ethanamine (NOC-18; slow-releasing NO donor, equivalent to 1 - 5 mu M NO) resulted in a gradual, persistent inhibition of complex IV concomitant with a reduction in ratios of mitochondrial GSH and GSSG. Overexpression of thioredoxin in mitochondria of PAEC attenuated NO-induced loss of complex IV activities, suggesting redox regulation of complex IV activity. Sequence analysis of complex IV subunits revealed a novel putative NO-sensitive motif in subunit II (S2). There are only two cysteine residues in porcine complex IV S2, located in the putative motif. Immunoprecipitation and Western blot analysis and biotin switch assay demonstrated that exposure of PAEC to 1 mM NOC-18 increased S-nitrosylation of complex IV S2 by 200%. Site-directed mutagenesis of these two cysteines of complex IV S2 attenuated NO-increased nitrosylation of complex IV S2. These results demonstrate for the first time that NO nitrosylates active site cysteines of complex IV, which is associated with persistent inhibition of complex IV. NO inhibition of complex IV via nitrosylation of NO-sensitive cysteine residues can be a novel upstream event in NO-complex IV signaling for NO toxicity in lung endothelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available