4.7 Article

Vibrations and stability of axially traveling laminated beams

Journal

APPLIED MATHEMATICS AND COMPUTATION
Volume 217, Issue 2, Pages 545-556

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.amc.2010.05.088

Keywords

Perturbation techniques; Vibration; The method of multiple scales; Axially traveling beams

Ask authors/readers for more resources

In this paper, vibrations and stability of an axially traveling laminated composite beam are investigated analytically via the method of multiple scales. Based on classical laminated beam theory, the governing equations of motion for a time-variant axial speed are obtained using Newton's second law of motion and constitutive relations. The method of multiple scales, an approximate analytical method, is applied directly to the gyroscopic governing equations of motion and complex eigenfunctions and natural frequencies of the system are obtained. The stability boundaries of the system near resonance are determined via the Routh-Hurwitz criterion. Finally, a parametric study is conducted which considers the effects of laminate type and configuration as well as the mean speed and amplitude of speed fluctuations on the vibration response, natural frequencies and stability boundaries of the system. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available