4.5 Article

Axonal development in the cerebral white matter of the human fetus and infant

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 484, Issue 2, Pages 156-167

Publisher

WILEY-LISS
DOI: 10.1002/cne.20453

Keywords

cerebral palsy; GAP-43; growth cones; myelination; neurofilaments; periventricular leukomalacia

Funding

  1. NICHD NIH HHS [P01-HD18655] Funding Source: Medline
  2. NINDS NIH HHS [P01-NS38475] Funding Source: Medline

Ask authors/readers for more resources

After completion of neuronal migration to form the cerebral cortex, axons undergo rapid elongation to their intra- and subcortical targets, from midgestation through infancy. We define axonal development in the human parietal white matter in this critical period. Immunocytochemistry and Western blot analysis were performed on 46 normative cases from 20-183 postconceptional (PC) weeks. Anti-SMI 312, a pan-marker of neurofilaments, stained axons as early as 23 weeks. Anti-SMI 32, a marker for nonphosphorylated neurofilament high molecular weight (NFH), primarily stained neuronal cell bodies (cortical, subcortical, and Cajal-Retzius). Anti-SMI 31, which stains phosphorylated NFH, was used as a marker of axonal maturity, and showed relatively low levels of staining (approximately one-fourth of adult levels) from 24-34 PC weeks. GAP-43, a marker of axonal growth and elongation, showed high levels of expression in the white matter from 21-64 PC weeks and lower, adult-like levels beyond 17 postnatal months. The onset of myelination, as seen by myelin basic protein expression, was similar to54 weeks, with progression to adult-like staining by 72-92 PC weeks. This study provides major insight into axonal maturation during a critical period of growth, over an age range not previously examined and one coinciding with the peak period of periventricular leukomalacia (PVL), the major disorder underlying cerebral palsy in premature infants. These data suggest that immature axons are susceptible to damage in PVL and that the timing of axonal maturation must be considered toward establishing its pathology relative to the oligodendrocyte/myelin/axonal unit. (C) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available