4.6 Article

FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 14, Pages 14222-14229

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M413625200

Keywords

-

Funding

  1. NIAMS NIH HHS [AR445617] Funding Source: Medline
  2. NIDDK NIH HHS [DK33301, DK600022, DK41430] Funding Source: Medline

Ask authors/readers for more resources

Emerging evidence documents a key function for the forkhead transcription factor FoxO1 in cellular metabolism. Here, we investigate the role of FoxO1 in the regulation of fatty acid ( FA) metabolism in muscle cells. C2C12 cells expressing an inducible construct with either wild type FoxO1 or a mutant form ( FoxO1/ TSS) refractory to the protein kinase B inhibitory effects were generated. FoxO1 activation after myotube formation altered the expression of several genes of FA metabolism. Acyl- CoA oxidase and peroxisome proliferatoractivated receptor delta mRNA levels increased 2.2- fold and 1.4- fold, respectively, whereas mRNA for acetyl- CoA carboxylase decreased by 50%. Membrane uptake of oleate increased 3- fold, and oleate oxidation increased 2- fold. Cellular triglyceride content was also increased. The enhanced FA utilization induced by FoxO1 was mediated by a severalfold increase in plasma membrane level of the fatty acid translocase FAT/ CD36 and eliminated by cell treatment with the CD36 inhibitor sulfo- N-succinimidyl-oleate. We conclude that FoxO1 activation induces coordinate increases in FA uptake and oxidation and that these effects are mediated, at least in part, by membrane enrichment in CD36. The data suggest that FoxO1 contributes to preparing the muscle cell for the increased reliance on FA metabolism that is characteristic of fasting. Dysregulation of FoxO1 in muscle could contribute to intramuscular lipid accumulation and insulin resistance by maintaining activation of FA uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available