4.7 Article

Shear softening and structure in a simulated three-dimensional binary glass

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 122, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1885000

Keywords

-

Ask authors/readers for more resources

Three-dimensional model binary glasses produced by quenching from a range of liquid temperatures were tested in shear over a range of strain rates using molecular-dynamics techniques. Tests were per-formed under constant volume and constant pressure constraints. The simulations revealed a systematic change in short-range order as a function of the thermal and strain history of the glass. While subtle signs of differences in short-range order were evident in the pair distribution function, three-body correlations were observed to be markedly more sensitive to the changes in structure. One particular structural parameter, the number of aligned three-atom clusters, was analyzed as a function of the degree of supercooling, the strain and the strain rate. The glasses quenched from the supercooled liquid regime were observed to contain an initally higher number of such clusters, and this number decreased under shear. Those quenched from high-temperature equilibrium liquids contained lower numbers of such clusters and these increased or remained constant under shear. The C classes quenched from the supercooled liquid regime showed higher strength, more marked shear softening, and an increased propensity toward shear localization. The evolution of this structural parameter depended both on its initial value and on the imposed shear rate. These results were observed to hold for simulations performed under both constant density and constant pressure boundary conditions. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available