4.7 Article

Convergent evolution of domain architectures (is rare)

Ask authors/readers for more resources

Motivation: In this paper, we shall examine the evolution of domain architectures across 62 genomes of known phylogeny including all kingdoms of life. We look in particular at the possibility of convergent evolution, with a view to determining the extent to which the architectures observed in the genomes are due to functional necessity or evolutionary descent. We used domains of known structure, because from this and other information we know their evolutionary relationships. We use a range of methods including phylogenetic grouping, sequence similarity/alignment, mutation rates and comparative genomics to approach this difficult problem from several angles. Results: Although we do not claim an exhaustive analysis, we conclude that between 0.4 and 4% of sequences are involved in convergent evolution of domain architectures, and expect the actual number to be close to the lower bound. We also made two incidental observations, albeit on a small sample: the events leading to convergent evolution appear to be random with no functional or structural preferences, and changes in the number of tandem repeat domains occur more readily than changes which alter the domain composition. Conclusion: The principal conclusion is that the observed domain architectures of the sequences in the genomes are driven by evolutionary descent rather than functional necessity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available