4.6 Article

Role of CD44 in epithelial wound repair - Migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44v6

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 15, Pages 15398-15404

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M414048200

Keywords

-

Funding

  1. NIDDK NIH HHS [R39DK31198, P30DK26743] Funding Source: Medline

Ask authors/readers for more resources

The hyaluronic acid receptor, CD44, exists as multiple splice variants that appear to have a role in migration of tumor cells. The role of this receptor and its variants in normal wound repair is poorly understood. A central feature of wound repair in the liver is activation and migration of perisinusoidal stellate cells. We have examined CD44 expression by stellate cells from normal or injured rat liver, finding that it increases with injury and involves a distinct set of CD44 splice variants. Among the latter, variants containing the v6 exon (CD44v6) are strikingly increased. Analysis of migration of primary cells on transwell filter inserts reveals that only cells isolated from injured liver are migratory. Also, they move more rapidly on hyaluronic acid than on collagen I or collagen IV. A polyclonal antibody to recombinant CD44v6 blocks migration by 50%, whereas antibody to CD44v4 has no effect. The inhibition is specific for cells migrating on hyaluronic acid and is reversed by synthetic peptide representing the N terminus of the v6 protein. In conclusion, activated stellate cells use CD44v6 and hyaluronic acid for migration. Given the evidence that migration is required for progression of injury with scar formation, blockers of CD44v6 expression or function are candidates for preventing the deleterious effects of chronic fibrosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available