4.6 Article

Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 15, Pages 14385-14394

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M413338200

Keywords

-

Ask authors/readers for more resources

Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical cysteine homologues of the classical selenocysteine-containing glutathione peroxidases. Although one of the sequences, peroxidase III, carries both putative mitochondrial and glycosomal targeting signals, the proteins are detectable only in the cytosol and mitochondrion of mammalian bloodstream and insect procyclic T. brucei. The enzyme is a trypanothione/tryparedoxin peroxidase as are the 2 Cys-peroxiredoxins of the parasite. Hydrogen peroxide, thymine hydroperoxide, and linoleic acid hydroperoxide are reduced with second order rate constants of 8.7 x 10(4), 7.6 x 10(4), and 4 x 10(4) M-1 s(-1), respectively, and represent probable physiological substrates. Phosphatidylcholine hydroperoxide is a very weak substrate and, in the absence of Triton X-100, even an inhibitor of the enzyme. The substrate preference clearly contrasts with that of the closely related T. cruzi enzyme, which reduces phosphatidylcholine hydroperoxides but not H2O2. RNA interference causes severe growth defects in bloodstream and procyclic cells in accordance with the peroxidases being essential in both developmental stages. Thus, the cellular functions of the glutathione peroxidase-type enzymes cannot be taken over by the 2 Cys-peroxiredoxins that also occur in the cytosol and mitochondrion of the parasite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available