4.2 Article

Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells

Journal

RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY
Volume 146, Issue 2-3, Pages 107-116

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.resp.2004.12.013

Keywords

cell culture; respiration; oxygen consumption

Ask authors/readers for more resources

To date, no adequate implant material for the correction of soft tissue defects such as after extensive deep burns, tumor resections or in congenital defects is available. A biohybrid composed of viable adipose precursor cells and an optimised matrix could help towards a solution. Morphologically, preadipocytes resemble fibroblasts and have not yet built a large cytoplasmic lipid droplet as found in differentiated adipocytes. Additionally, preadipocytes are smaller than mature adipocytes allowing a quicker revascularization after transplantation. Furthermore, transplanted preadipocytes can form adipose tissue in vivo whereas the transplantation of mature adipocytes often gives poor results, i.e. oil cysts or shrinkage of the transplant. Since these observations point to differences in metabolic activity between preadipocytes and adipocytes, we investigated the oxygen consumption of preadipocytes stimulated to undergo differentiation, and fibroblasts, by measuring the respiration with a Clark-type oxygen electrode. Preadipocytes had a significantly lower oxygen consumption than mature adipocytes. This advantage in respiration and the better revascularization of undifferentiated adipose tissue cells allow the development of innovative transplants and point to preadipocytes as promising tool to improve transplantations in adipose tissue reconstruction. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available