4.7 Article

Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation

Journal

JOURNAL OF NUCLEAR MATERIALS
Volume 340, Issue 2-3, Pages 187-202

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnucmat.2004.11.009

Keywords

-

Ask authors/readers for more resources

The thermal conductivity degradation due to low-temperature neutron irradiation is studied and quantified in terms of thermal resistance terms. Neutron irradiation is assumed to have no effect on urnklapp scattering. A theoretical model is presented to quantify the relative phonon-scattering effectiveness of the three dominant defect types produced by neutron irradiation: point defects, dislocation loops and voids. Several commercial ceramics have been irradiated with fission reactor fast neutrons at low temperatures to produce defects. Materials include silicon carbide, sapphire, polycrystalline alumina, aluminum nitride, silicon nitride, beryllium oxide, and a carbon fiber composite. The neutron dose corresponded to 0.001 and 0.01 displacements per atom (dpa) for a similar to 60 degrees C irradiation and 0.01 and 0.1 dpa for a similar to 300 degrees C irradiation. Substantial thermal conductivity degradation occurred in all of the materials except BeO following irradiation at 60 degrees C to a dose of only 0.001 dpa. The data are discussed in terms of the effective increase in thermal resistance caused by the different irradiation conditions. Evidence for significant point defect mobility during irradiation at 60 and 300 degrees C was obtained for all of the ceramics. The thermal stability of the radiation defects was investigated by isochronal annealing up to 1050 degrees C. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available