4.6 Article

Nonreciprocal waveguide Bragg gratings

Journal

OPTICS EXPRESS
Volume 13, Issue 8, Pages 3068-3078

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPEX.13.003068

Keywords

-

Categories

Ask authors/readers for more resources

The use of a complex short-period (Bragg) grating which combines matched periodic modulations of refractive index and loss/gain allows asymmetrical mode coupling within a contra-directional waveguide coupler. Such a complex Bragg grating exhibits a different behavior ( e. g. in terms of the reflection and transmission spectra) when probed from opposite ends. More specifically, the grating has a single reflection peak when used from one end, but it is transparent ( zero reflection) when used from the opposite end. In this paper, we conduct a systematic analytical and numerical analysis of this new class of Bragg gratings. The spectral performance of these, so-called nonreciprocal gratings, is first investigated in detail and the influence of device parameters on the transmission spectra of these devices is also analyzed. Our studies reveal that in addition to the nonreciprocal behavior, a nonreciprocal Bragg grating exhibits a strong amplification at the resonance wavelength ( even with zero net-gain level in the waveguide) while simultaneously providing higher wavelength selectivity than the equivalent index Bragg grating. However, it is also shown that in order to achieve non-reciprocity in the device, a very careful adjustment of the parameters corresponding to the index and gain/loss gratings is required. (C) 2005 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available