4.4 Article

Recurrent epidemics in small world networks

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 233, Issue 4, Pages 553-561

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2004.10.031

Keywords

epidemiology; spatial structure; complex networks; recurrent epidemics

Ask authors/readers for more resources

The effect of spatial correlations on the spread of infectious diseases was investigated using a stochastic susceptible-infective-recovered (SIR) model on complex networks. It was found that in addition to the reduction of the effective transmission rate, through the screening of infectives, spatial correlations have another major effect through the enhancement of stochastic fluctuations, which may become considerably larger than in the homogeneously mixed stochastic model. As a consequence, in finite spatially structured populations significant differences from the solutions of deterministic models are to be expected, since sizes even larger than those found for homogeneously mixed stochastic models are required for the effects of fluctuations to be negligible. Furthermore, time series of the (unforced) model provide patterns of recurrent epidemics with slightly irregular periods and realistic amplitudes, suggesting that stochastic models together with complex networks of contacts may be sufficient to describe the long-term dynamics of some diseases. The spatial effects were analysed quantitatively by modelling measles and pertussis, using a susceptible-exposed-infective-recovered (SEIR) model. Both the period and the spatial coherence of the epidemic peaks of pertussis are well described by the unforced model for realistic values of the parameters. (c) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available