4.5 Article

Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 15, Pages 7174-7181

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp044741o

Keywords

-

Ask authors/readers for more resources

We investigate the magnitude and temperature dependence of electrical conductivity, the optical and infrared absorption, and the Raman spectra of single-walled carbon nanotube (SWNT) bucky-paper after chemical treatment and determine the correlations between the changes in these properties. Ionic-acceptor doping of the SWNT bucky-paper (with SOCl2, iodine, H2SO3, etc.) causes an increase of electrical conductivity that correlates with an increase of the absorbance in the far-IR region and an increase in the frequency of Raman spectral lines. Conversely, treatment with other molecules (e.g., aniline, PyPhF5, PhCH2Br, etc.) leads to a decrease in both conductivity and far-IR absorption. The temperature dependence of the conductivity gives a good indication of the presence of metallic charge carriers and is in agreement with the model of interrupted metallic conduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available