4.7 Article

Theory of solvent influence on reaction dynamics

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 122, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1884515

Keywords

-

Ask authors/readers for more resources

A generalization of the recently published quantum-classical approximation [A. A. Neufeld, J. Chem. Phys., 119, 2488 (2003)] for the purposes of reaction dynamics in condensed phase is presented. The obtained kinetic equations treat a solvent influence in a nonphenomenological way, account for the change of the free energy of the surrounding media, allow for different solvent dynamics in each reaction channel, and constitute a powerful framework for an accurate modeling of solvent effects, including ultrafast processes. The key features of the approach are its differential form, which considerably facilitates practical applications, and well defined wide applicability limits. The developed methodology fully accounts for an arbitrary long memory of the canonical bath and covers solvent-induced processes from a subpicosecond time scale. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available