4.8 Article

Hydrogen embrittlement of aluminum: The crucial role of vacancies

Journal

PHYSICAL REVIEW LETTERS
Volume 94, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.94.155501

Keywords

-

Ask authors/readers for more resources

We report first-principles calculations which demonstrate that vacancies can combine with hydrogen impurities in bulk aluminum and play a crucial role in the embrittlement of this prototypical ductile solid. Our studies of hydrogen-induced vacancy superabundant formation and vacancy clusterization in aluminum lead to the conclusion that a large number of H atoms (up to 12) can be trapped at a single vacancy, which overcompensates the energy cost to form the defect. In the presence of trapped H atoms, three nearest-neighbor single vacancies which normally would repel each other, aggregate to form a trivacancy on the slip plane of Al, acting as embryos for microvoids and cracks and resulting in ductile rupture along these planes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available