4.8 Article

Scanning the human proteome for calmodulin-binding proteins

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0407928102

Keywords

mRNA display; binding motif; protein-protein interactions; calcium-dependent

Funding

  1. NIGMS NIH HHS [GM53936, R01 GM053936] Funding Source: Medline

Ask authors/readers for more resources

The calcium ion (Ca2+) is a ubiquitous second messenger that is crucial for the regulation of a wide variety of cellular processes. The diverse transient signals transduced by Ca2+ are mediated by intracellular Ca2+-binding proteins, also known as Ca2+ sensors. A key obstacle to studying many Ca2+-sensing proteins is the difficulty in identifying the numerous downstream target interactions that respond to Ca2+-induced conformational changes. Among a number of Ca2+ sensors in the eukaryotic cell, calmodulin (CaM) is the most widespread and the best studied. Employing the mRNA display technique, we have scanned the human proteome for CaM-binding proteins and have identified and characterized a large number of both known and previously uncharacterized proteins that interact with CaM in a Ca2+-dependent manner. The interactions of several identified proteins with Ca2+/CaM were confirmed by using pull-down assays and coimmunoprecipitation. Many of the CaM-binding proteins identified belong to protein families such as the DEAD/H box proteins, ribosomal proteins, proteasome 26S subunits, and deubiquitinating enzymes, suggesting the possible involvement of Ca2+/CaM in different signaling pathways. The selection method described herein could be used to identify the binding partners of other calcium sensors on the proteome-wide scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available