4.6 Article

Liquid crystalline mesophases of pluronics (L64, P65, and P123) and transition metal nitrate salts ([M(H2O)6](NO3)2)

Journal

LANGMUIR
Volume 21, Issue 9, Pages 4156-4162

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la047136l

Keywords

-

Ask authors/readers for more resources

The triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers, Pluronics (L64, P65, and P123), form liquid crystalline (LC) mesophases with transition metal nitrate salts (TMS), [M(H2O)(n)] (NO3)(2), in the presence and absence of free water in the media. In this assembly process M-OH2 plays an important role as observed in a TMS:CnEOm (CnEOm is oligo(ethylene oxide) nonionic surfactants) system. The structure of the LC mesophases and interactions of the metal ion-nitrate ion and metal ion-Pluronic were investigated using microscopy (POM), diffraction (XRD), and spectroscopy (FTIR and micro-Raman) techniques. The TMS:L64 system requires a shear force for mesophase ordering to be observed using X-ray diffraction. However, TMS:P65 and TMS:P123 form well structured LC mesophases. Depending on the salt/Pluronic mole ratio, hexagonal LC mesophases are observed in the TMS:P65 systems and cubic and tetragonal LC mesophases in the TMS:P123 systems. The LC mesophase in the water/salt/Pluronic system is sensitive to the concentration of free (H2O) and coordinated water (M-OH2) molecules and demonstrates structural changes. As the free water is evaporated from the H2O:TMS:Pluronic LC mesophase (ternary mixture), the nitrate ion remains free in the media. However, complete evaporation of the free water molecules enforces the coordination of the nitrate ion to the metal ion in all TMS:Pluronic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available