4.8 Article

Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications:: A full quantum-chemical treatment

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 127, Issue 16, Pages 6077-6086

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja042390l

Keywords

-

Ask authors/readers for more resources

This work focuses on two fundamental processes in organic solar cells-exciton dissociation and charge recombination-and describes how quantum-chemical calculations can be exploited to estimate the molecular parameters that determine the rates of these processes. The general concepts behind our approach are illustrated by considering a donor-acceptor complex made of a phthalocyanine (electron donor) molecule and a perylene (acceptor) molecule. The results highlight how the relative rates of the two processes depend on the dimensionality of the molecules, their relative positions, the symmetry of the relevant electronic levels, and the polarity of the medium. It is shown, for instance, that highly symmetric configurations of the complex can strongly limit charge recombination; this emphasizes the need for a fine control of the supramolecular organization at organic-organic interfaces in donor-acceptor blends.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available