4.6 Article

Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2005.02.135

Keywords

ATP synthase; aconitase; aging; MDA oxidative modification; mitochondria

Funding

  1. NIA NIH HHS [R01 AG013563-13, R01 AG013563, R01 AG13563] Funding Source: Medline

Ask authors/readers for more resources

The main purpose of this study was to identify mitochondrial proteins that exhibit post-translational oxidative modifications during the aging process and to determine the resulting functional alterations. Proteins forming adducts with malondialdehyde (MDA), a product of lipid peroxidation, were identified by immunodetection in mitochondria isolated from heart and hind leg skeletal muscle of 6-, 16-, and 24-month-old mice. Aconitase, very long chain acyl coenzyme A dehydrogenase, ATP synthase, and alpha-ketoglutarate dehydrogenase were detected as putative targets of oxidative modification by MDA. Aconitase and ATP synthase from heart exhibited significant decreases in activity with age. Very long chain acyl coenzyme A dehydrogenase and alpha-ketoglutarate dehydrogenase activities were unaffected during aging in both heart and skeletal muscle. This suggests that the presence of a post-translational oxidative modification in a protein does not a priori reflect an alteration in activity. The biological consequences of an age-related decrease in aconitase and ATP synthase activities may contribute to the decline in mitochondrial bioenergetics evident during aging. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available