4.7 Article

Thermodynamic and kinetic basis for the relaxed DNA sequence specificity of Promiscuous mutant EcoRI endonucleases

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 348, Issue 2, Pages 307-324

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.02.051

Keywords

DNA recognition; EcoRI cleavage; EcoRI; lethal mutation; protein-DNA interactions

Funding

  1. NIGMS NIH HHS [R01 GM029207, 5R37-GM029207, R37 GM029207] Funding Source: Medline

Ask authors/readers for more resources

Promiscuous mutant EcoRI endonucleases produce lethal to sublethal effects because they cleave Escherichia coli DNA despite the presence of the EcoRI methylase. Three promiscuous mutant forms, Ala138Thr, Glu192Lys and His114Tyr, have been characterized with respect to their binding affinities and first-order cleavage rate constants towards the three classes of DNA sites: specific, miscognate (EcoRI*) and non-specific. We have made the unanticipated and counterintuitive observations that the mutant restriction endonucleases that exhibit relaxed specificity in vivo nevertheless bind more tightly than the wild-type enzyme to the specific recognition sequence in vitro, and show even greater preference for binding to the cognate GAATTC site over miscognate sites. Binding preference for EcoRI* over non-specific DNA is also improved. The first-order cleavage rate constants of the mutant enzymes are normal for the cognate site GAATTC, but are greater than those of the wild-type enzyme at EcoRI* sites. Thus, the mutant enzymes use two mechanisms to partially bypass the multiple fail-safe mechanisms that protect against cleavage of genomic DNA in cells carrying the wild-type EcoRI restriction-modification system: (a) binding to EcoRI* sites is more probable than for wild-type enzyme because non-specific DNA is less effective as a competitive inhibitor; (b) the combination of increased affinity and elevated cleavage rate constants at EcoRI* sites makes double-strand cleavage of these sites a more probable outcome than it is for the wild-type enzyme. Semi-quantitative estimates of rates of EcoRI* site cleavage in vivo, predicted using the binding and cleavage constants measured in vitro, are in accord with the observed lethal phenotypes associated with the three mutations. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available