4.2 Article

Mechanism of internalization of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans

Journal

MICROBIOLOGY-SGM
Volume 151, Issue -, Pages 1395-1402

Publisher

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/mic.0.27671-0

Keywords

-

Categories

Ask authors/readers for more resources

Cytolethal distending toxin (CDT), which is encoded by three genes, cdtA, cdtB and cdtC, is now recognized to have a growing list of biological actions, including inhibition of cell cycle progression, promotion of apoptosis and stimulation of cytokine secretion. It appears that internalization of CDT is essential, at least for cell cycle blockade. Using purified recombinant CDT proteins from the periodontopathic bacterium Actinobacillus actinomycetemcomitans, the authors investigated which combination of toxin proteins produce cell cycle inhibition and which bound and/or entered into host cells. No evidence was found that CdtB bound to HEp-2 human epithelial cells. In contrast, both CdtA and CdtC bound to these cells. Induction of cell cycle arrest required that cells be exposed to both CdtB and CdtC. Pre-exposure of cells to CdtC; for as little as 10 min, followed by removal of the free CdtC and addition of exogenous CdtB, resulted in the inhibition of cell cycle progression, suggesting that CdtB could bind to cell-surface-located CdtC. Using various methods to follow internalization of the CDT proteins it was concluded that CdtC acts to bind CdtB at the cell surface and transports it into the cell as a complex via an endosomal pathway blockable by monensin and brefeldin A.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available